3.2.79 \(\int x (a+b \arccos (c x))^{3/2} \, dx\) [179]

3.2.79.1 Optimal result
3.2.79.2 Mathematica [A] (verified)
3.2.79.3 Rubi [A] (verified)
3.2.79.4 Maple [B] (verified)
3.2.79.5 Fricas [F(-2)]
3.2.79.6 Sympy [F]
3.2.79.7 Maxima [F]
3.2.79.8 Giac [C] (verification not implemented)
3.2.79.9 Mupad [F(-1)]

3.2.79.1 Optimal result

Integrand size = 14, antiderivative size = 172 \[ \int x (a+b \arccos (c x))^{3/2} \, dx=-\frac {3 b x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{8 c}-\frac {(a+b \arccos (c x))^{3/2}}{4 c^2}+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}+\frac {3 b^{3/2} \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{32 c^2}-\frac {3 b^{3/2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{32 c^2} \]

output
-1/4*(a+b*arccos(c*x))^(3/2)/c^2+1/2*x^2*(a+b*arccos(c*x))^(3/2)+3/32*b^(3 
/2)*cos(2*a/b)*FresnelS(2*(a+b*arccos(c*x))^(1/2)/b^(1/2)/Pi^(1/2))*Pi^(1/ 
2)/c^2-3/32*b^(3/2)*FresnelC(2*(a+b*arccos(c*x))^(1/2)/b^(1/2)/Pi^(1/2))*s 
in(2*a/b)*Pi^(1/2)/c^2-3/8*b*x*(-c^2*x^2+1)^(1/2)*(a+b*arccos(c*x))^(1/2)/ 
c
 
3.2.79.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.84 \[ \int x (a+b \arccos (c x))^{3/2} \, dx=\frac {3 b^{3/2} \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )-3 b^{3/2} \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )+2 \sqrt {a+b \arccos (c x)} (4 a \cos (2 \arccos (c x))+4 b \arccos (c x) \cos (2 \arccos (c x))-3 b \sin (2 \arccos (c x)))}{32 c^2} \]

input
Integrate[x*(a + b*ArcCos[c*x])^(3/2),x]
 
output
(3*b^(3/2)*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcCos[c*x]])/(Sqr 
t[b]*Sqrt[Pi])] - 3*b^(3/2)*Sqrt[Pi]*FresnelC[(2*Sqrt[a + b*ArcCos[c*x]])/ 
(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b] + 2*Sqrt[a + b*ArcCos[c*x]]*(4*a*Cos[2*Ar 
cCos[c*x]] + 4*b*ArcCos[c*x]*Cos[2*ArcCos[c*x]] - 3*b*Sin[2*ArcCos[c*x]])) 
/(32*c^2)
 
3.2.79.3 Rubi [A] (verified)

Time = 1.57 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.03, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.071, Rules used = {5141, 5211, 5147, 25, 4906, 27, 3042, 3787, 25, 3042, 3785, 3786, 3832, 3833, 5153}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x (a+b \arccos (c x))^{3/2} \, dx\)

\(\Big \downarrow \) 5141

\(\displaystyle \frac {3}{4} b c \int \frac {x^2 \sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 5211

\(\displaystyle \frac {3}{4} b c \left (\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {b \int \frac {x}{\sqrt {a+b \arccos (c x)}}dx}{4 c}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 5147

\(\displaystyle \frac {3}{4} b c \left (\frac {\int -\frac {\cos \left (\frac {a}{b}-\frac {a+b \arccos (c x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arccos (c x)}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{4 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3}{4} b c \left (-\frac {\int \frac {\cos \left (\frac {a}{b}-\frac {a+b \arccos (c x)}{b}\right ) \sin \left (\frac {a}{b}-\frac {a+b \arccos (c x)}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{4 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 4906

\(\displaystyle \frac {3}{4} b c \left (-\frac {\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arccos (c x))}{b}\right )}{2 \sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{4 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3}{4} b c \left (-\frac {\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{4} b c \left (-\frac {\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3787

\(\displaystyle \frac {3}{4} b c \left (\frac {-\sin \left (\frac {2 a}{b}\right ) \int \frac {\cos \left (\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))-\cos \left (\frac {2 a}{b}\right ) \int -\frac {\sin \left (\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3}{4} b c \left (\frac {\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))-\sin \left (\frac {2 a}{b}\right ) \int \frac {\cos \left (\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{4} b c \left (\frac {\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))-\sin \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arccos (c x))}{b}+\frac {\pi }{2}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3785

\(\displaystyle \frac {3}{4} b c \left (\frac {\cos \left (\frac {2 a}{b}\right ) \int \frac {\sin \left (\frac {2 (a+b \arccos (c x))}{b}\right )}{\sqrt {a+b \arccos (c x)}}d(a+b \arccos (c x))-2 \sin \left (\frac {2 a}{b}\right ) \int \cos \left (\frac {2 (a+b \arccos (c x))}{b}\right )d\sqrt {a+b \arccos (c x)}}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3786

\(\displaystyle \frac {3}{4} b c \left (\frac {2 \cos \left (\frac {2 a}{b}\right ) \int \sin \left (\frac {2 (a+b \arccos (c x))}{b}\right )d\sqrt {a+b \arccos (c x)}-2 \sin \left (\frac {2 a}{b}\right ) \int \cos \left (\frac {2 (a+b \arccos (c x))}{b}\right )d\sqrt {a+b \arccos (c x)}}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3832

\(\displaystyle \frac {3}{4} b c \left (\frac {\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )-2 \sin \left (\frac {2 a}{b}\right ) \int \cos \left (\frac {2 (a+b \arccos (c x))}{b}\right )d\sqrt {a+b \arccos (c x)}}{8 c^3}+\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 3833

\(\displaystyle \frac {3}{4} b c \left (\frac {\int \frac {\sqrt {a+b \arccos (c x)}}{\sqrt {1-c^2 x^2}}dx}{2 c^2}+\frac {\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )-\sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{8 c^3}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

\(\Big \downarrow \) 5153

\(\displaystyle \frac {3}{4} b c \left (\frac {\sqrt {\pi } \sqrt {b} \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )-\sqrt {\pi } \sqrt {b} \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arccos (c x)}}{\sqrt {b} \sqrt {\pi }}\right )}{8 c^3}-\frac {(a+b \arccos (c x))^{3/2}}{3 b c^3}-\frac {x \sqrt {1-c^2 x^2} \sqrt {a+b \arccos (c x)}}{2 c^2}\right )+\frac {1}{2} x^2 (a+b \arccos (c x))^{3/2}\)

input
Int[x*(a + b*ArcCos[c*x])^(3/2),x]
 
output
(x^2*(a + b*ArcCos[c*x])^(3/2))/2 + (3*b*c*(-1/2*(x*Sqrt[1 - c^2*x^2]*Sqrt 
[a + b*ArcCos[c*x]])/c^2 - (a + b*ArcCos[c*x])^(3/2)/(3*b*c^3) + (Sqrt[b]* 
Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcCos[c*x]])/(Sqrt[b]*Sqrt[P 
i])] - Sqrt[b]*Sqrt[Pi]*FresnelC[(2*Sqrt[a + b*ArcCos[c*x]])/(Sqrt[b]*Sqrt 
[Pi])]*Sin[(2*a)/b])/(8*c^3)))/4
 

3.2.79.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 5141
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x 
^(m + 1)*((a + b*ArcCos[c*x])^n/(m + 1)), x] + Simp[b*c*(n/(m + 1))   Int[x 
^(m + 1)*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{ 
a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]
 

rule 5147
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[- 
(b*c^(m + 1))^(-1)   Subst[Int[x^n*Cos[-a/b + x/b]^m*Sin[-a/b + x/b], x], x 
, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 5153
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(-(b*c*(n + 1))^(-1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2] 
]*(a + b*ArcCos[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^ 
2*d + e, 0] && NeQ[n, -1]
 

rule 5211
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcCos[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] - S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
3.2.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(280\) vs. \(2(134)=268\).

Time = 1.96 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.63

method result size
default \(\frac {-3 \sqrt {a +b \arccos \left (c x \right )}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right ) \sin \left (\frac {2 a}{b}\right ) b^{2}-3 \sqrt {a +b \arccos \left (c x \right )}\, \sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arccos \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right ) b^{2}+8 \arccos \left (c x \right )^{2} \cos \left (-\frac {2 \left (a +b \arccos \left (c x \right )\right )}{b}+\frac {2 a}{b}\right ) b^{2}+16 \arccos \left (c x \right ) \cos \left (-\frac {2 \left (a +b \arccos \left (c x \right )\right )}{b}+\frac {2 a}{b}\right ) a b +6 \arccos \left (c x \right ) \sin \left (-\frac {2 \left (a +b \arccos \left (c x \right )\right )}{b}+\frac {2 a}{b}\right ) b^{2}+8 \cos \left (-\frac {2 \left (a +b \arccos \left (c x \right )\right )}{b}+\frac {2 a}{b}\right ) a^{2}+6 \sin \left (-\frac {2 \left (a +b \arccos \left (c x \right )\right )}{b}+\frac {2 a}{b}\right ) a b}{32 c^{2} \sqrt {a +b \arccos \left (c x \right )}}\) \(281\)

input
int(x*(a+b*arccos(c*x))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/32/c^2/(a+b*arccos(c*x))^(1/2)*(-3*(a+b*arccos(c*x))^(1/2)*Pi^(1/2)*(-1/ 
b)^(1/2)*FresnelC(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/ 
b)*sin(2*a/b)*b^2-3*(a+b*arccos(c*x))^(1/2)*Pi^(1/2)*(-1/b)^(1/2)*cos(2*a/ 
b)*FresnelS(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arccos(c*x))^(1/2)/b)*b^2 
+8*arccos(c*x)^2*cos(-2*(a+b*arccos(c*x))/b+2*a/b)*b^2+16*arccos(c*x)*cos( 
-2*(a+b*arccos(c*x))/b+2*a/b)*a*b+6*arccos(c*x)*sin(-2*(a+b*arccos(c*x))/b 
+2*a/b)*b^2+8*cos(-2*(a+b*arccos(c*x))/b+2*a/b)*a^2+6*sin(-2*(a+b*arccos(c 
*x))/b+2*a/b)*a*b)
 
3.2.79.5 Fricas [F(-2)]

Exception generated. \[ \int x (a+b \arccos (c x))^{3/2} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x*(a+b*arccos(c*x))^(3/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.2.79.6 Sympy [F]

\[ \int x (a+b \arccos (c x))^{3/2} \, dx=\int x \left (a + b \operatorname {acos}{\left (c x \right )}\right )^{\frac {3}{2}}\, dx \]

input
integrate(x*(a+b*acos(c*x))**(3/2),x)
 
output
Integral(x*(a + b*acos(c*x))**(3/2), x)
 
3.2.79.7 Maxima [F]

\[ \int x (a+b \arccos (c x))^{3/2} \, dx=\int { {\left (b \arccos \left (c x\right ) + a\right )}^{\frac {3}{2}} x \,d x } \]

input
integrate(x*(a+b*arccos(c*x))^(3/2),x, algorithm="maxima")
 
output
integrate((b*arccos(c*x) + a)^(3/2)*x, x)
 
3.2.79.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.00 (sec) , antiderivative size = 845, normalized size of antiderivative = 4.91 \[ \int x (a+b \arccos (c x))^{3/2} \, dx=\text {Too large to display} \]

input
integrate(x*(a+b*arccos(c*x))^(3/2),x, algorithm="giac")
 
output
-1/4*I*sqrt(pi)*a^2*b^(3/2)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) - I*sqrt( 
b*arccos(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^2 + I*b^3/abs(b))*c^2) 
+ 1/8*sqrt(pi)*a*b^(5/2)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) - I*sqrt(b*a 
rccos(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^2 + I*b^3/abs(b))*c^2) + 1 
/4*I*sqrt(pi)*a^2*b^(3/2)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) + I*sqrt(b* 
arccos(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b^2 - I*b^3/abs(b))*c^2) + 
 1/8*sqrt(pi)*a*b^(5/2)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) + I*sqrt(b*ar 
ccos(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b^2 - I*b^3/abs(b))*c^2) - 1 
/8*sqrt(pi)*a*b^2*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) - I*sqrt(b*arccos(c 
*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b^(3/2) + I*b^(5/2)/abs(b))*c^2) - 
1/4*I*sqrt(pi)*a^2*b*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) + I*sqrt(b*arcco 
s(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b^(3/2) - I*b^(5/2)/abs(b))*c^2 
) - 1/8*sqrt(pi)*a*b^2*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) + I*sqrt(b*arc 
cos(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b^(3/2) - I*b^(5/2)/abs(b))*c 
^2) + 1/4*I*sqrt(pi)*a^2*sqrt(b)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) - I* 
sqrt(b*arccos(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b + I*b^2/abs(b))*c^ 
2) - 3/64*I*sqrt(pi)*b^(5/2)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) - I*sqrt 
(b*arccos(c*x) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/((b + I*b^2/abs(b))*c^2) + 
 3/64*I*sqrt(pi)*b^(5/2)*erf(-sqrt(b*arccos(c*x) + a)/sqrt(b) + I*sqrt(b*a 
rccos(c*x) + a)*sqrt(b)/abs(b))*e^(-2*I*a/b)/((b - I*b^2/abs(b))*c^2) +...
 
3.2.79.9 Mupad [F(-1)]

Timed out. \[ \int x (a+b \arccos (c x))^{3/2} \, dx=\int x\,{\left (a+b\,\mathrm {acos}\left (c\,x\right )\right )}^{3/2} \,d x \]

input
int(x*(a + b*acos(c*x))^(3/2),x)
 
output
int(x*(a + b*acos(c*x))^(3/2), x)